import xarray as xr
WeatherBench 2 Data Guide
One core part of WeatherBench 2 are ready-to-use, cloud-based datasets. This page lists and describes all the available datasets.
The datasets are stored in this public Google Cloud bucket: gs://weatherbench2/datasets
. Please also check the LICENSE files for each dataset in the respective GCS buckets. Some datasets allow commercial use. Others only permit research use.
A note on resolutions
We provide the datasets at different resolutions. All files will have the number of longitude X latitude grid points in their filename, e.g. 64x32
. For the WeatherBench 2 paper, all evaluation was done at 240x121
= 1.5 degree resolution. All datasets were regridded using first-order conservative regridding, i.e., with weights proportional to the area of overlap between grid cells on the original and desired grids.
The ERA5 resolution files (1440x721
= 0.25 degrees) contain the poles, i.e. -90 and 90 degree latitude. Most regridded files also do, denoted with with_poles
. The 512x256
files do not contain the pole grid points.
Ground-truth datasets
ERA5
Our ERA5 datasets were downloaded from the Copernicus Climate Data Store and have a time range from 1959 to 2022 (incl.). The data here have been downsampled to 6h and 13 levels, even though a raw hourly dataset with 37 levels is also available at gs://weatherbench2/datasets/era5/1959-2022-full_37-1h-0p25deg-chunk-1.zarr-v2
Location: gs://weatherbench2/datasets/era5/
Files:
1959-2022-6h-1440x721.zarr
1959-2022-6h-512x256_equiangular_conservative.zarr
1959-2022-6h-240x121_equiangular_with_poles_conservative.zarr
1959-2022-6h-128x64_equiangular_with_poles_conservative.zarr
1959-2022-6h-64x32_equiangular_with_poles_conservative.zarr
See output below for a list of variables. Wind speed was derived using this method.
xr.open_zarr('gs://weatherbench2/datasets/era5/1959-2022-6h-1440x721.zarr')
/opt/miniconda3/envs/weatherbench2/lib/python3.11/site-packages/google/auth/_default.py:79: UserWarning: Your application has authenticated using end user credentials from Google Cloud SDK without a quota project. You might receive a "quota exceeded" or "API not enabled" error. We recommend you rerun `gcloud auth application-default login` and make sure a quota project is added. Or you can use service accounts instead. For more information about service accounts, see https://cloud.google.com/docs/authentication/
warnings.warn(_CLOUD_SDK_CREDENTIALS_WARNING)
<xarray.Dataset> Dimensions: (time: 92044, latitude: 721, longitude: 1440, level: 13) Coordinates: * latitude (latitude) float32 90.0... * level (level) int64 50 ... 1000 * longitude (longitude) float32 0.0... * time (time) datetime64[ns] 1... Data variables: (12/38) 10m_u_component_of_wind (time, latitude, longitude) float32 dask.array<chunksize=(1, 721, 1440), meta=np.ndarray> 10m_v_component_of_wind (time, latitude, longitude) float32 dask.array<chunksize=(1, 721, 1440), meta=np.ndarray> 10m_wind_speed (time, latitude, longitude) float32 dask.array<chunksize=(1, 721, 1440), meta=np.ndarray> 2m_temperature (time, latitude, longitude) float32 dask.array<chunksize=(1, 721, 1440), meta=np.ndarray> angle_of_sub_gridscale_orography (latitude, longitude) float32 dask.array<chunksize=(721, 1440), meta=np.ndarray> anisotropy_of_sub_gridscale_orography (latitude, longitude) float32 dask.array<chunksize=(721, 1440), meta=np.ndarray> ... ... type_of_high_vegetation (latitude, longitude) float32 dask.array<chunksize=(721, 1440), meta=np.ndarray> type_of_low_vegetation (latitude, longitude) float32 dask.array<chunksize=(721, 1440), meta=np.ndarray> u_component_of_wind (time, level, latitude, longitude) float32 dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray> v_component_of_wind (time, level, latitude, longitude) float32 dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray> vertical_velocity (time, level, latitude, longitude) float32 dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray> wind_speed (time, level, latitude, longitude) float32 dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray>
- time: 92044
- latitude: 721
- longitude: 1440
- level: 13
- latitude(latitude)float3290.0 89.75 89.5 ... -89.75 -90.0
- long_name :
- latitude
- units :
- degrees_north
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ], dtype=float32)
- level(level)int6450 100 150 200 ... 700 850 925 1000
array([ 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000])
- longitude(longitude)float320.0 0.25 0.5 ... 359.2 359.5 359.8
- long_name :
- longitude
- units :
- degrees_east
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02], dtype=float32)
- time(time)datetime64[ns]1959-01-01 ... 2021-12-31T18:00:00
array(['1959-01-01T00:00:00.000000000', '1959-01-01T06:00:00.000000000', '1959-01-01T12:00:00.000000000', ..., '2021-12-31T06:00:00.000000000', '2021-12-31T12:00:00.000000000', '2021-12-31T18:00:00.000000000'], dtype='datetime64[ns]')
- 10m_u_component_of_wind(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
- long_name :
- 10 metre U wind component
- short_name :
- u10
- units :
- m s**-1
Array Chunk Bytes 356.00 GiB 3.96 MiB Shape (92044, 721, 1440) (1, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray - 10m_v_component_of_wind(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
- long_name :
- 10 metre V wind component
- short_name :
- v10
- units :
- m s**-1
Array Chunk Bytes 356.00 GiB 3.96 MiB Shape (92044, 721, 1440) (1, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray - 10m_wind_speed(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
Array Chunk Bytes 356.00 GiB 3.96 MiB Shape (92044, 721, 1440) (1, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray - 2m_temperature(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
- long_name :
- 2 metre temperature
- short_name :
- t2m
- units :
- K
Array Chunk Bytes 356.00 GiB 3.96 MiB Shape (92044, 721, 1440) (1, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray - angle_of_sub_gridscale_orography(latitude, longitude)float32dask.array<chunksize=(721, 1440), meta=np.ndarray>
- long_name :
- Angle of sub-gridscale orography
- short_name :
- anor
- units :
- radians
Array Chunk Bytes 3.96 MiB 3.96 MiB Shape (721, 1440) (721, 1440) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - anisotropy_of_sub_gridscale_orography(latitude, longitude)float32dask.array<chunksize=(721, 1440), meta=np.ndarray>
- long_name :
- Anisotropy of sub-gridscale orography
- short_name :
- isor
- units :
- ~
Array Chunk Bytes 3.96 MiB 3.96 MiB Shape (721, 1440) (721, 1440) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - geopotential(time, level, latitude, longitude)float32dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray>
- long_name :
- Geopotential
- short_name :
- z
- standard_name :
- geopotential
- units :
- m**2 s**-2
Array Chunk Bytes 4.52 TiB 51.49 MiB Shape (92044, 13, 721, 1440) (1, 13, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray - geopotential_at_surface(latitude, longitude)float32dask.array<chunksize=(721, 1440), meta=np.ndarray>
- long_name :
- Geopotential
- short_name :
- z
- standard_name :
- geopotential
- units :
- m**2 s**-2
Array Chunk Bytes 3.96 MiB 3.96 MiB Shape (721, 1440) (721, 1440) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - high_vegetation_cover(latitude, longitude)float32dask.array<chunksize=(721, 1440), meta=np.ndarray>
- long_name :
- High vegetation cover
- short_name :
- cvh
- units :
- (0 - 1)
Array Chunk Bytes 3.96 MiB 3.96 MiB Shape (721, 1440) (721, 1440) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - lake_cover(latitude, longitude)float32dask.array<chunksize=(721, 1440), meta=np.ndarray>
- long_name :
- Lake cover
- short_name :
- cl
- units :
- (0 - 1)
Array Chunk Bytes 3.96 MiB 3.96 MiB Shape (721, 1440) (721, 1440) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - lake_depth(latitude, longitude)float32dask.array<chunksize=(721, 1440), meta=np.ndarray>
- long_name :
- Lake total depth
- short_name :
- dl
- units :
- m
Array Chunk Bytes 3.96 MiB 3.96 MiB Shape (721, 1440) (721, 1440) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - land_sea_mask(latitude, longitude)float32dask.array<chunksize=(721, 1440), meta=np.ndarray>
- long_name :
- Land-sea mask
- short_name :
- lsm
- standard_name :
- land_binary_mask
- units :
- (0 - 1)
Array Chunk Bytes 3.96 MiB 3.96 MiB Shape (721, 1440) (721, 1440) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - low_vegetation_cover(latitude, longitude)float32dask.array<chunksize=(721, 1440), meta=np.ndarray>
- long_name :
- Low vegetation cover
- short_name :
- cvl
- units :
- (0 - 1)
Array Chunk Bytes 3.96 MiB 3.96 MiB Shape (721, 1440) (721, 1440) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - mean_sea_level_pressure(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
- long_name :
- Mean sea level pressure
- short_name :
- msl
- standard_name :
- air_pressure_at_mean_sea_level
- units :
- Pa
Array Chunk Bytes 356.00 GiB 3.96 MiB Shape (92044, 721, 1440) (1, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray - sea_ice_cover(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
- long_name :
- Sea ice area fraction
- short_name :
- siconc
- standard_name :
- sea_ice_area_fraction
- units :
- (0 - 1)
Array Chunk Bytes 356.00 GiB 3.96 MiB Shape (92044, 721, 1440) (1, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray - sea_surface_temperature(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
- long_name :
- Sea surface temperature
- short_name :
- sst
- units :
- K
Array Chunk Bytes 356.00 GiB 3.96 MiB Shape (92044, 721, 1440) (1, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray - slope_of_sub_gridscale_orography(latitude, longitude)float32dask.array<chunksize=(721, 1440), meta=np.ndarray>
- long_name :
- Slope of sub-gridscale orography
- short_name :
- slor
- units :
- ~
Array Chunk Bytes 3.96 MiB 3.96 MiB Shape (721, 1440) (721, 1440) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - soil_type(latitude, longitude)float32dask.array<chunksize=(721, 1440), meta=np.ndarray>
- long_name :
- Soil type
- short_name :
- slt
- units :
- ~
Array Chunk Bytes 3.96 MiB 3.96 MiB Shape (721, 1440) (721, 1440) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - specific_humidity(time, level, latitude, longitude)float32dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray>
- long_name :
- Specific humidity
- short_name :
- q
- standard_name :
- specific_humidity
- units :
- kg kg**-1
Array Chunk Bytes 4.52 TiB 51.49 MiB Shape (92044, 13, 721, 1440) (1, 13, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray - standard_deviation_of_filtered_subgrid_orography(latitude, longitude)float32dask.array<chunksize=(721, 1440), meta=np.ndarray>
- long_name :
- Standard deviation of filtered subgrid orography
- short_name :
- sdfor
- units :
- m
Array Chunk Bytes 3.96 MiB 3.96 MiB Shape (721, 1440) (721, 1440) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - standard_deviation_of_orography(latitude, longitude)float32dask.array<chunksize=(721, 1440), meta=np.ndarray>
- long_name :
- Standard deviation of orography
- short_name :
- sdor
- units :
- m
Array Chunk Bytes 3.96 MiB 3.96 MiB Shape (721, 1440) (721, 1440) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - surface_pressure(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
- long_name :
- Surface pressure
- short_name :
- sp
- standard_name :
- surface_air_pressure
- units :
- Pa
Array Chunk Bytes 356.00 GiB 3.96 MiB Shape (92044, 721, 1440) (1, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray - temperature(time, level, latitude, longitude)float32dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray>
- long_name :
- Temperature
- short_name :
- t
- standard_name :
- air_temperature
- units :
- K
Array Chunk Bytes 4.52 TiB 51.49 MiB Shape (92044, 13, 721, 1440) (1, 13, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray - toa_incident_solar_radiation(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
- long_name :
- TOA incident solar radiation
- short_name :
- tisr
- units :
- J m**-2
Array Chunk Bytes 356.00 GiB 3.96 MiB Shape (92044, 721, 1440) (1, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray - toa_incident_solar_radiation_12hr(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
- long_name :
- TOA incident solar radiation
- short_name :
- tisr
- units :
- J m**-2
Array Chunk Bytes 356.00 GiB 3.96 MiB Shape (92044, 721, 1440) (1, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray - toa_incident_solar_radiation_24hr(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
- long_name :
- TOA incident solar radiation
- short_name :
- tisr
- units :
- J m**-2
Array Chunk Bytes 356.00 GiB 3.96 MiB Shape (92044, 721, 1440) (1, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray - toa_incident_solar_radiation_6hr(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
- long_name :
- TOA incident solar radiation
- short_name :
- tisr
- units :
- J m**-2
Array Chunk Bytes 356.00 GiB 3.96 MiB Shape (92044, 721, 1440) (1, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray - total_cloud_cover(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
- long_name :
- Total cloud cover
- short_name :
- tcc
- standard_name :
- cloud_area_fraction
- units :
- (0 - 1)
Array Chunk Bytes 356.00 GiB 3.96 MiB Shape (92044, 721, 1440) (1, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray - total_column_water_vapour(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
- long_name :
- Total column vertically-integrated water vapour
- short_name :
- tcwv
- standard_name :
- lwe_thickness_of_atmosphere_mass_content_of_water_vapor
- units :
- kg m**-2
Array Chunk Bytes 356.00 GiB 3.96 MiB Shape (92044, 721, 1440) (1, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray - total_precipitation_12hr(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
- long_name :
- Total precipitation
- short_name :
- tp
- units :
- m
Array Chunk Bytes 356.00 GiB 3.96 MiB Shape (92044, 721, 1440) (1, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray - total_precipitation_24hr(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
- long_name :
- Total precipitation
- short_name :
- tp
- units :
- m
Array Chunk Bytes 356.00 GiB 3.96 MiB Shape (92044, 721, 1440) (1, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray - total_precipitation_6hr(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
- long_name :
- Total precipitation
- short_name :
- tp
- units :
- m
Array Chunk Bytes 356.00 GiB 3.96 MiB Shape (92044, 721, 1440) (1, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray - type_of_high_vegetation(latitude, longitude)float32dask.array<chunksize=(721, 1440), meta=np.ndarray>
- long_name :
- Type of high vegetation
- short_name :
- tvh
- units :
- ~
Array Chunk Bytes 3.96 MiB 3.96 MiB Shape (721, 1440) (721, 1440) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - type_of_low_vegetation(latitude, longitude)float32dask.array<chunksize=(721, 1440), meta=np.ndarray>
- long_name :
- Type of low vegetation
- short_name :
- tvl
- units :
- ~
Array Chunk Bytes 3.96 MiB 3.96 MiB Shape (721, 1440) (721, 1440) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - u_component_of_wind(time, level, latitude, longitude)float32dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray>
- long_name :
- U component of wind
- short_name :
- u
- standard_name :
- eastward_wind
- units :
- m s**-1
Array Chunk Bytes 4.52 TiB 51.49 MiB Shape (92044, 13, 721, 1440) (1, 13, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray - v_component_of_wind(time, level, latitude, longitude)float32dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray>
- long_name :
- V component of wind
- short_name :
- v
- standard_name :
- northward_wind
- units :
- m s**-1
Array Chunk Bytes 4.52 TiB 51.49 MiB Shape (92044, 13, 721, 1440) (1, 13, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray - vertical_velocity(time, level, latitude, longitude)float32dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray>
- long_name :
- Vertical velocity
- short_name :
- w
- standard_name :
- lagrangian_tendency_of_air_pressure
- units :
- Pa s**-1
Array Chunk Bytes 4.52 TiB 51.49 MiB Shape (92044, 13, 721, 1440) (1, 13, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray - wind_speed(time, level, latitude, longitude)float32dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray>
Array Chunk Bytes 4.52 TiB 51.49 MiB Shape (92044, 13, 721, 1440) (1, 13, 721, 1440) Dask graph 92044 chunks in 2 graph layers Data type float32 numpy.ndarray
- latitudePandasIndex
PandasIndex(Index([ 90.0, 89.75, 89.5, 89.25, 89.0, 88.75, 88.5, 88.25, 88.0, 87.75, ... -87.75, -88.0, -88.25, -88.5, -88.75, -89.0, -89.25, -89.5, -89.75, -90.0], dtype='float32', name='latitude', length=721))
- levelPandasIndex
PandasIndex(Index([50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000], dtype='int64', name='level'))
- longitudePandasIndex
PandasIndex(Index([ 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, ... 357.5, 357.75, 358.0, 358.25, 358.5, 358.75, 359.0, 359.25, 359.5, 359.75], dtype='float32', name='longitude', length=1440))
- timePandasIndex
PandasIndex(DatetimeIndex(['1959-01-01 00:00:00', '1959-01-01 06:00:00', '1959-01-01 12:00:00', '1959-01-01 18:00:00', '1959-01-02 00:00:00', '1959-01-02 06:00:00', '1959-01-02 12:00:00', '1959-01-02 18:00:00', '1959-01-03 00:00:00', '1959-01-03 06:00:00', ... '2021-12-29 12:00:00', '2021-12-29 18:00:00', '2021-12-30 00:00:00', '2021-12-30 06:00:00', '2021-12-30 12:00:00', '2021-12-30 18:00:00', '2021-12-31 00:00:00', '2021-12-31 06:00:00', '2021-12-31 12:00:00', '2021-12-31 18:00:00'], dtype='datetime64[ns]', name='time', length=92044, freq=None))
ERA5 Climatology
A climatology is used for e.g. computing anomaly metrics such as the ACC. For WeatherBench 2, the climatology was computed using a running window for smoothing (see paper and script) for each day of year and sixth hour of day. We have computed climatologies for 1990-2017 and 1990-2019.
Location: gs://weatherbench2/datasets/era5-hourly-climatology/
Files:
1990-2017_6h_1440x721.zarr
1990-2017_6h_512x256_equiangular_conservative.zarr
1990-2017_6h_240x121_equiangular_with_poles_conservative.zarr
1990-2017_6h_128x64_equiangular_with_poles_conservative.zarr
1990-2017_6h_64x32_equiangular_with_poles_conservative.zarr
1990-2019_6h_1440x721.zarr
1990-2019_6h_512x256_equiangular_conservative.zarr
1990-2019_6h_240x121_equiangular_with_poles_conservative.zarr
1990-2019_6h_128x64_equiangular_with_poles_conservative.zarr
1990-2019_6h_64x32_equiangular_with_poles_conservative.zarr
xr.open_zarr('gs://weatherbench2/datasets/era5-hourly-climatology/1990-2019_6h_1440x721.zarr')
<xarray.Dataset> Dimensions: (hour: 4, dayofyear: 366, latitude: 721, longitude: 1440, level: 13) Coordinates: * dayofyear (dayofyear) int64 1 2 ... 366 * hour (hour) int64 0 6 12 18 * latitude (latitude) float32 90.0 ... ... * level (level) int64 50 100 ... 1000 * longitude (longitude) float32 0.0 ... ... Data variables: (12/28) 10m_u_component_of_wind (hour, dayofyear, latitude, longitude) float32 dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray> 10m_v_component_of_wind (hour, dayofyear, latitude, longitude) float32 dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray> 10m_wind_speed (hour, dayofyear, latitude, longitude) float32 dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray> 2m_temperature (hour, dayofyear, latitude, longitude) float32 dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray> geopotential (hour, dayofyear, level, latitude, longitude) float32 dask.array<chunksize=(3, 3, 1, 721, 1440), meta=np.ndarray> mean_sea_level_pressure (hour, dayofyear, latitude, longitude) float32 dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray> ... ... total_precipitation_6hr_seeps_dry_fraction (hour, dayofyear, latitude, longitude) float32 dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray> total_precipitation_6hr_seeps_threshold (hour, dayofyear, latitude, longitude) float32 dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray> u_component_of_wind (hour, dayofyear, level, latitude, longitude) float32 dask.array<chunksize=(3, 3, 1, 721, 1440), meta=np.ndarray> v_component_of_wind (hour, dayofyear, level, latitude, longitude) float32 dask.array<chunksize=(3, 3, 1, 721, 1440), meta=np.ndarray> vertical_velocity (hour, dayofyear, level, latitude, longitude) float32 dask.array<chunksize=(3, 3, 1, 721, 1440), meta=np.ndarray> wind_speed (hour, dayofyear, level, latitude, longitude) float32 dask.array<chunksize=(3, 3, 1, 721, 1440), meta=np.ndarray>
- hour: 4
- dayofyear: 366
- latitude: 721
- longitude: 1440
- level: 13
- dayofyear(dayofyear)int641 2 3 4 5 6 ... 362 363 364 365 366
array([ 1, 2, 3, ..., 364, 365, 366])
- hour(hour)int640 6 12 18
array([ 0, 6, 12, 18])
- latitude(latitude)float3290.0 89.75 89.5 ... -89.75 -90.0
- long_name :
- latitude
- units :
- degrees_north
array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ], dtype=float32)
- level(level)int6450 100 150 200 ... 700 850 925 1000
array([ 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000])
- longitude(longitude)float320.0 0.25 0.5 ... 359.2 359.5 359.8
- long_name :
- longitude
- units :
- degrees_east
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02], dtype=float32)
- 10m_u_component_of_wind(hour, dayofyear, latitude, longitude)float32dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray>
- long_name :
- 10 metre U wind component
- short_name :
- u10
- units :
- m s**-1
Array Chunk Bytes 5.66 GiB 35.65 MiB Shape (4, 366, 721, 1440) (3, 3, 721, 1440) Dask graph 244 chunks in 2 graph layers Data type float32 numpy.ndarray - 10m_v_component_of_wind(hour, dayofyear, latitude, longitude)float32dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray>
- long_name :
- 10 metre V wind component
- short_name :
- v10
- units :
- m s**-1
Array Chunk Bytes 5.66 GiB 35.65 MiB Shape (4, 366, 721, 1440) (3, 3, 721, 1440) Dask graph 244 chunks in 2 graph layers Data type float32 numpy.ndarray - 10m_wind_speed(hour, dayofyear, latitude, longitude)float32dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray>
Array Chunk Bytes 5.66 GiB 35.65 MiB Shape (4, 366, 721, 1440) (3, 3, 721, 1440) Dask graph 244 chunks in 2 graph layers Data type float32 numpy.ndarray - 2m_temperature(hour, dayofyear, latitude, longitude)float32dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray>
- long_name :
- 2 metre temperature
- short_name :
- t2m
- units :
- K
Array Chunk Bytes 5.66 GiB 35.65 MiB Shape (4, 366, 721, 1440) (3, 3, 721, 1440) Dask graph 244 chunks in 2 graph layers Data type float32 numpy.ndarray - geopotential(hour, dayofyear, level, latitude, longitude)float32dask.array<chunksize=(3, 3, 1, 721, 1440), meta=np.ndarray>
- long_name :
- Geopotential
- short_name :
- z
- standard_name :
- geopotential
- units :
- m**2 s**-2
Array Chunk Bytes 73.61 GiB 35.65 MiB Shape (4, 366, 13, 721, 1440) (3, 3, 1, 721, 1440) Dask graph 3172 chunks in 2 graph layers Data type float32 numpy.ndarray - mean_sea_level_pressure(hour, dayofyear, latitude, longitude)float32dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray>
- long_name :
- Mean sea level pressure
- short_name :
- msl
- standard_name :
- air_pressure_at_mean_sea_level
- units :
- Pa
Array Chunk Bytes 5.66 GiB 35.65 MiB Shape (4, 366, 721, 1440) (3, 3, 721, 1440) Dask graph 244 chunks in 2 graph layers Data type float32 numpy.ndarray - sea_ice_cover(hour, dayofyear, latitude, longitude)float32dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray>
- long_name :
- Sea ice area fraction
- short_name :
- siconc
- standard_name :
- sea_ice_area_fraction
- units :
- (0 - 1)
Array Chunk Bytes 5.66 GiB 35.65 MiB Shape (4, 366, 721, 1440) (3, 3, 721, 1440) Dask graph 244 chunks in 2 graph layers Data type float32 numpy.ndarray - sea_surface_temperature(hour, dayofyear, latitude, longitude)float32dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray>
- long_name :
- Sea surface temperature
- short_name :
- sst
- units :
- K
Array Chunk Bytes 5.66 GiB 35.65 MiB Shape (4, 366, 721, 1440) (3, 3, 721, 1440) Dask graph 244 chunks in 2 graph layers Data type float32 numpy.ndarray - specific_humidity(hour, dayofyear, level, latitude, longitude)float32dask.array<chunksize=(3, 3, 1, 721, 1440), meta=np.ndarray>
- long_name :
- Specific humidity
- short_name :
- q
- standard_name :
- specific_humidity
- units :
- kg kg**-1
Array Chunk Bytes 73.61 GiB 35.65 MiB Shape (4, 366, 13, 721, 1440) (3, 3, 1, 721, 1440) Dask graph 3172 chunks in 2 graph layers Data type float32 numpy.ndarray - surface_pressure(hour, dayofyear, latitude, longitude)float32dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray>
- long_name :
- Surface pressure
- short_name :
- sp
- standard_name :
- surface_air_pressure
- units :
- Pa
Array Chunk Bytes 5.66 GiB 35.65 MiB Shape (4, 366, 721, 1440) (3, 3, 721, 1440) Dask graph 244 chunks in 2 graph layers Data type float32 numpy.ndarray - temperature(hour, dayofyear, level, latitude, longitude)float32dask.array<chunksize=(3, 3, 1, 721, 1440), meta=np.ndarray>
- long_name :
- Temperature
- short_name :
- t
- standard_name :
- air_temperature
- units :
- K
Array Chunk Bytes 73.61 GiB 35.65 MiB Shape (4, 366, 13, 721, 1440) (3, 3, 1, 721, 1440) Dask graph 3172 chunks in 2 graph layers Data type float32 numpy.ndarray - toa_incident_solar_radiation(hour, dayofyear, latitude, longitude)float32dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray>
- long_name :
- TOA incident solar radiation
- short_name :
- tisr
- units :
- J m**-2
Array Chunk Bytes 5.66 GiB 35.65 MiB Shape (4, 366, 721, 1440) (3, 3, 721, 1440) Dask graph 244 chunks in 2 graph layers Data type float32 numpy.ndarray - toa_incident_solar_radiation_12hr(hour, dayofyear, latitude, longitude)float32dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray>
- long_name :
- TOA incident solar radiation
- short_name :
- tisr
- units :
- J m**-2
Array Chunk Bytes 5.66 GiB 35.65 MiB Shape (4, 366, 721, 1440) (3, 3, 721, 1440) Dask graph 244 chunks in 2 graph layers Data type float32 numpy.ndarray - toa_incident_solar_radiation_24hr(hour, dayofyear, latitude, longitude)float32dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray>
- long_name :
- TOA incident solar radiation
- short_name :
- tisr
- units :
- J m**-2
Array Chunk Bytes 5.66 GiB 35.65 MiB Shape (4, 366, 721, 1440) (3, 3, 721, 1440) Dask graph 244 chunks in 2 graph layers Data type float32 numpy.ndarray - toa_incident_solar_radiation_6hr(hour, dayofyear, latitude, longitude)float32dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray>
- long_name :
- TOA incident solar radiation
- short_name :
- tisr
- units :
- J m**-2
Array Chunk Bytes 5.66 GiB 35.65 MiB Shape (4, 366, 721, 1440) (3, 3, 721, 1440) Dask graph 244 chunks in 2 graph layers Data type float32 numpy.ndarray - total_cloud_cover(hour, dayofyear, latitude, longitude)float32dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray>
- long_name :
- Total cloud cover
- short_name :
- tcc
- standard_name :
- cloud_area_fraction
- units :
- (0 - 1)
Array Chunk Bytes 5.66 GiB 35.65 MiB Shape (4, 366, 721, 1440) (3, 3, 721, 1440) Dask graph 244 chunks in 2 graph layers Data type float32 numpy.ndarray - total_column_water_vapour(hour, dayofyear, latitude, longitude)float32dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray>
- long_name :
- Total column vertically-integrated water vapour
- short_name :
- tcwv
- standard_name :
- lwe_thickness_of_atmosphere_mass_content_of_water_vapor
- units :
- kg m**-2
Array Chunk Bytes 5.66 GiB 35.65 MiB Shape (4, 366, 721, 1440) (3, 3, 721, 1440) Dask graph 244 chunks in 2 graph layers Data type float32 numpy.ndarray - total_precipitation_12hr(hour, dayofyear, latitude, longitude)float32dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray>
- long_name :
- Total precipitation
- short_name :
- tp
- units :
- m
Array Chunk Bytes 5.66 GiB 35.65 MiB Shape (4, 366, 721, 1440) (3, 3, 721, 1440) Dask graph 244 chunks in 2 graph layers Data type float32 numpy.ndarray - total_precipitation_24hr(hour, dayofyear, latitude, longitude)float32dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray>
- long_name :
- Total precipitation
- short_name :
- tp
- units :
- m
Array Chunk Bytes 5.66 GiB 35.65 MiB Shape (4, 366, 721, 1440) (3, 3, 721, 1440) Dask graph 244 chunks in 2 graph layers Data type float32 numpy.ndarray - total_precipitation_24hr_seeps_dry_fraction(hour, dayofyear, latitude, longitude)float32dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray>
- long_name :
- Total precipitation
- short_name :
- tp
- units :
- m
Array Chunk Bytes 5.66 GiB 35.65 MiB Shape (4, 366, 721, 1440) (3, 3, 721, 1440) Dask graph 244 chunks in 2 graph layers Data type float32 numpy.ndarray - total_precipitation_24hr_seeps_threshold(hour, dayofyear, latitude, longitude)float32dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray>
- long_name :
- Total precipitation
- short_name :
- tp
- units :
- m
Array Chunk Bytes 5.66 GiB 35.65 MiB Shape (4, 366, 721, 1440) (3, 3, 721, 1440) Dask graph 244 chunks in 2 graph layers Data type float32 numpy.ndarray - total_precipitation_6hr(hour, dayofyear, latitude, longitude)float32dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray>
- long_name :
- Total precipitation
- short_name :
- tp
- units :
- m
Array Chunk Bytes 5.66 GiB 35.65 MiB Shape (4, 366, 721, 1440) (3, 3, 721, 1440) Dask graph 244 chunks in 2 graph layers Data type float32 numpy.ndarray - total_precipitation_6hr_seeps_dry_fraction(hour, dayofyear, latitude, longitude)float32dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray>
- long_name :
- Total precipitation
- short_name :
- tp
- units :
- m
Array Chunk Bytes 5.66 GiB 35.65 MiB Shape (4, 366, 721, 1440) (3, 3, 721, 1440) Dask graph 244 chunks in 2 graph layers Data type float32 numpy.ndarray - total_precipitation_6hr_seeps_threshold(hour, dayofyear, latitude, longitude)float32dask.array<chunksize=(3, 3, 721, 1440), meta=np.ndarray>
- long_name :
- Total precipitation
- short_name :
- tp
- units :
- m
Array Chunk Bytes 5.66 GiB 35.65 MiB Shape (4, 366, 721, 1440) (3, 3, 721, 1440) Dask graph 244 chunks in 2 graph layers Data type float32 numpy.ndarray - u_component_of_wind(hour, dayofyear, level, latitude, longitude)float32dask.array<chunksize=(3, 3, 1, 721, 1440), meta=np.ndarray>
- long_name :
- U component of wind
- short_name :
- u
- standard_name :
- eastward_wind
- units :
- m s**-1
Array Chunk Bytes 73.61 GiB 35.65 MiB Shape (4, 366, 13, 721, 1440) (3, 3, 1, 721, 1440) Dask graph 3172 chunks in 2 graph layers Data type float32 numpy.ndarray - v_component_of_wind(hour, dayofyear, level, latitude, longitude)float32dask.array<chunksize=(3, 3, 1, 721, 1440), meta=np.ndarray>
- long_name :
- V component of wind
- short_name :
- v
- standard_name :
- northward_wind
- units :
- m s**-1
Array Chunk Bytes 73.61 GiB 35.65 MiB Shape (4, 366, 13, 721, 1440) (3, 3, 1, 721, 1440) Dask graph 3172 chunks in 2 graph layers Data type float32 numpy.ndarray - vertical_velocity(hour, dayofyear, level, latitude, longitude)float32dask.array<chunksize=(3, 3, 1, 721, 1440), meta=np.ndarray>
- long_name :
- Vertical velocity
- short_name :
- w
- standard_name :
- lagrangian_tendency_of_air_pressure
- units :
- Pa s**-1
Array Chunk Bytes 73.61 GiB 35.65 MiB Shape (4, 366, 13, 721, 1440) (3, 3, 1, 721, 1440) Dask graph 3172 chunks in 2 graph layers Data type float32 numpy.ndarray - wind_speed(hour, dayofyear, level, latitude, longitude)float32dask.array<chunksize=(3, 3, 1, 721, 1440), meta=np.ndarray>
Array Chunk Bytes 73.61 GiB 35.65 MiB Shape (4, 366, 13, 721, 1440) (3, 3, 1, 721, 1440) Dask graph 3172 chunks in 2 graph layers Data type float32 numpy.ndarray
- dayofyearPandasIndex
PandasIndex(Index([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... 357, 358, 359, 360, 361, 362, 363, 364, 365, 366], dtype='int64', name='dayofyear', length=366))
- hourPandasIndex
PandasIndex(Index([0, 6, 12, 18], dtype='int64', name='hour'))
- latitudePandasIndex
PandasIndex(Index([ 90.0, 89.75, 89.5, 89.25, 89.0, 88.75, 88.5, 88.25, 88.0, 87.75, ... -87.75, -88.0, -88.25, -88.5, -88.75, -89.0, -89.25, -89.5, -89.75, -90.0], dtype='float32', name='latitude', length=721))
- levelPandasIndex
PandasIndex(Index([50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000], dtype='int64', name='level'))
- longitudePandasIndex
PandasIndex(Index([ 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, ... 357.5, 357.75, 358.0, 358.25, 358.5, 358.75, 359.0, 359.25, 359.5, 359.75], dtype='float32', name='longitude', length=1440))
IFS HRES t=0 “Analysis”
To evaluate IFS forecasts, we use the IFS analysis as the ground truth. Note that here we use the initial conditions of the HRES forecasts, i.e. the forecasts at lead time zero as analysis. This is not exactly the same as the analysis dataset provided by ECMWF (see paper for details).
Location: gs://weatherbench2/datasets/hres_t0/
Files:
2016-2022-6h-1440x721.zarr
2016-2022-6h-512x256_equiangular_conservative.zarr
2016-2022-6h-240x121_equiangular_with_poles_conservative.zarr
2016-2022-6h-128x64_equiangular_with_poles_conservative.zarr
2016-2022-6h-64x32_equiangular_with_poles_conservative.zarr
xr.open_zarr('gs://weatherbench2/datasets/hres_t0/2016-2022-6h-1440x721.zarr')
<xarray.Dataset> Dimensions: (time: 10268, latitude: 721, longitude: 1440, level: 13) Coordinates: * latitude (latitude) float32 -90.0 -89.75 ... 89.75 90.0 * level (level) int32 50 100 150 200 ... 700 850 925 1000 * longitude (longitude) float32 0.0 0.25 0.5 ... 359.5 359.8 * time (time) datetime64[ns] 2016-01-01 ... 2023-01-10T... Data variables: (12/14) 10m_u_component_of_wind (time, latitude, longitude) float32 dask.array<chunksize=(1, 721, 1440), meta=np.ndarray> 10m_v_component_of_wind (time, latitude, longitude) float32 dask.array<chunksize=(1, 721, 1440), meta=np.ndarray> 10m_wind_speed (time, latitude, longitude) float32 dask.array<chunksize=(1, 721, 1440), meta=np.ndarray> 2m_temperature (time, latitude, longitude) float32 dask.array<chunksize=(1, 721, 1440), meta=np.ndarray> geopotential (time, level, latitude, longitude) float32 dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray> mean_sea_level_pressure (time, latitude, longitude) float32 dask.array<chunksize=(1, 721, 1440), meta=np.ndarray> ... ... temperature (time, level, latitude, longitude) float32 dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray> total_precipitation_6hr (time, latitude, longitude) float32 dask.array<chunksize=(1, 721, 1440), meta=np.ndarray> u_component_of_wind (time, level, latitude, longitude) float32 dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray> v_component_of_wind (time, level, latitude, longitude) float32 dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray> vertical_velocity (time, level, latitude, longitude) float32 dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray> wind_speed (time, level, latitude, longitude) float32 dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray>
- time: 10268
- latitude: 721
- longitude: 1440
- level: 13
- latitude(latitude)float32-90.0 -89.75 -89.5 ... 89.75 90.0
array([-90. , -89.75, -89.5 , ..., 89.5 , 89.75, 90. ], dtype=float32)
- level(level)int3250 100 150 200 ... 700 850 925 1000
array([ 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000], dtype=int32)
- longitude(longitude)float320.0 0.25 0.5 ... 359.2 359.5 359.8
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02], dtype=float32)
- time(time)datetime64[ns]2016-01-01 ... 2023-01-10T18:00:00
- long_name :
- initial time of forecast
- standard_name :
- forecast_reference_time
array(['2016-01-01T00:00:00.000000000', '2016-01-01T06:00:00.000000000', '2016-01-01T12:00:00.000000000', ..., '2023-01-10T06:00:00.000000000', '2023-01-10T12:00:00.000000000', '2023-01-10T18:00:00.000000000'], dtype='datetime64[ns]')
- 10m_u_component_of_wind(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
- long_name :
- 10 metre U wind component
- short_name :
- u10
- standard_name :
- unknown
- units :
- m s**-1
Array Chunk Bytes 39.71 GiB 3.96 MiB Shape (10268, 721, 1440) (1, 721, 1440) Dask graph 10268 chunks in 2 graph layers Data type float32 numpy.ndarray - 10m_v_component_of_wind(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
- long_name :
- 10 metre V wind component
- short_name :
- v10
- standard_name :
- unknown
- units :
- m s**-1
Array Chunk Bytes 39.71 GiB 3.96 MiB Shape (10268, 721, 1440) (1, 721, 1440) Dask graph 10268 chunks in 2 graph layers Data type float32 numpy.ndarray - 10m_wind_speed(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
Array Chunk Bytes 39.71 GiB 3.96 MiB Shape (10268, 721, 1440) (1, 721, 1440) Dask graph 10268 chunks in 2 graph layers Data type float32 numpy.ndarray - 2m_temperature(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
- long_name :
- 2 metre temperature
- short_name :
- t2m
- standard_name :
- unknown
- units :
- K
Array Chunk Bytes 39.71 GiB 3.96 MiB Shape (10268, 721, 1440) (1, 721, 1440) Dask graph 10268 chunks in 2 graph layers Data type float32 numpy.ndarray - geopotential(time, level, latitude, longitude)float32dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray>
- long_name :
- Geopotential
- short_name :
- z
- standard_name :
- geopotential
- units :
- m**2 s**-2
Array Chunk Bytes 516.28 GiB 51.49 MiB Shape (10268, 13, 721, 1440) (1, 13, 721, 1440) Dask graph 10268 chunks in 2 graph layers Data type float32 numpy.ndarray - mean_sea_level_pressure(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
- long_name :
- Mean sea level pressure
- short_name :
- msl
- standard_name :
- air_pressure_at_mean_sea_level
- units :
- Pa
Array Chunk Bytes 39.71 GiB 3.96 MiB Shape (10268, 721, 1440) (1, 721, 1440) Dask graph 10268 chunks in 2 graph layers Data type float32 numpy.ndarray - specific_humidity(time, level, latitude, longitude)float32dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray>
- long_name :
- Specific humidity
- short_name :
- q
- standard_name :
- specific_humidity
- units :
- kg kg**-1
Array Chunk Bytes 516.28 GiB 51.49 MiB Shape (10268, 13, 721, 1440) (1, 13, 721, 1440) Dask graph 10268 chunks in 2 graph layers Data type float32 numpy.ndarray - surface_pressure(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
- long_name :
- Surface pressure
- short_name :
- sp
- standard_name :
- surface_air_pressure
- units :
- Pa
Array Chunk Bytes 39.71 GiB 3.96 MiB Shape (10268, 721, 1440) (1, 721, 1440) Dask graph 10268 chunks in 2 graph layers Data type float32 numpy.ndarray - temperature(time, level, latitude, longitude)float32dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray>
- long_name :
- Temperature
- short_name :
- t
- standard_name :
- air_temperature
- units :
- K
Array Chunk Bytes 516.28 GiB 51.49 MiB Shape (10268, 13, 721, 1440) (1, 13, 721, 1440) Dask graph 10268 chunks in 2 graph layers Data type float32 numpy.ndarray - total_precipitation_6hr(time, latitude, longitude)float32dask.array<chunksize=(1, 721, 1440), meta=np.ndarray>
- long_name :
- Total precipitation
- short_name :
- tp
- standard_name :
- unknown
- units :
- m
Array Chunk Bytes 39.71 GiB 3.96 MiB Shape (10268, 721, 1440) (1, 721, 1440) Dask graph 10268 chunks in 2 graph layers Data type float32 numpy.ndarray - u_component_of_wind(time, level, latitude, longitude)float32dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray>
- long_name :
- U component of wind
- short_name :
- u
- standard_name :
- eastward_wind
- units :
- m s**-1
Array Chunk Bytes 516.28 GiB 51.49 MiB Shape (10268, 13, 721, 1440) (1, 13, 721, 1440) Dask graph 10268 chunks in 2 graph layers Data type float32 numpy.ndarray - v_component_of_wind(time, level, latitude, longitude)float32dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray>
- long_name :
- V component of wind
- short_name :
- v
- standard_name :
- northward_wind
- units :
- m s**-1
Array Chunk Bytes 516.28 GiB 51.49 MiB Shape (10268, 13, 721, 1440) (1, 13, 721, 1440) Dask graph 10268 chunks in 2 graph layers Data type float32 numpy.ndarray - vertical_velocity(time, level, latitude, longitude)float32dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray>
- long_name :
- Vertical velocity
- short_name :
- w
- standard_name :
- lagrangian_tendency_of_air_pressure
- units :
- Pa s**-1
Array Chunk Bytes 516.28 GiB 51.49 MiB Shape (10268, 13, 721, 1440) (1, 13, 721, 1440) Dask graph 10268 chunks in 2 graph layers Data type float32 numpy.ndarray - wind_speed(time, level, latitude, longitude)float32dask.array<chunksize=(1, 13, 721, 1440), meta=np.ndarray>
Array Chunk Bytes 516.28 GiB 51.49 MiB Shape (10268, 13, 721, 1440) (1, 13, 721, 1440) Dask graph 10268 chunks in 2 graph layers Data type float32 numpy.ndarray
- latitudePandasIndex
PandasIndex(Index([ -90.0, -89.75, -89.5, -89.25, -89.0, -88.75, -88.5, -88.25, -88.0, -87.75, ... 87.75, 88.0, 88.25, 88.5, 88.75, 89.0, 89.25, 89.5, 89.75, 90.0], dtype='float32', name='latitude', length=721))
- levelPandasIndex
PandasIndex(Index([50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000], dtype='int32', name='level'))
- longitudePandasIndex
PandasIndex(Index([ 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, ... 357.5, 357.75, 358.0, 358.25, 358.5, 358.75, 359.0, 359.25, 359.5, 359.75], dtype='float32', name='longitude', length=1440))
- timePandasIndex
PandasIndex(DatetimeIndex(['2016-01-01 00:00:00', '2016-01-01 06:00:00', '2016-01-01 12:00:00', '2016-01-01 18:00:00', '2016-01-02 00:00:00', '2016-01-02 06:00:00', '2016-01-02 12:00:00', '2016-01-02 18:00:00', '2016-01-03 00:00:00', '2016-01-03 06:00:00', ... '2023-01-08 12:00:00', '2023-01-08 18:00:00', '2023-01-09 00:00:00', '2023-01-09 06:00:00', '2023-01-09 12:00:00', '2023-01-09 18:00:00', '2023-01-10 00:00:00', '2023-01-10 06:00:00', '2023-01-10 12:00:00', '2023-01-10 18:00:00'], dtype='datetime64[ns]', name='time', length=10268, freq=None))
Forecast datasets
IFS HRES
Here, we provide the 00 and 12 UTC initializations of HRES.
Location: gs://weatherbench2/datasets/hres/
Files:
2016-2022-0012-1440x721.zarr
2016-2022-0012-512x256_equiangular_conservative.zarr
2016-2022-0012-240x121_equiangular_with_poles_conservative.zarr
2016-2022-0012-128x64_equiangular_with_poles_conservative.zarr
2016-2022-0012-64x32_equiangular_with_poles_conservative.zarr
xr.open_zarr('gs://weatherbench2/datasets/hres/2016-2022-0012-1440x721.zarr')
<xarray.Dataset> Dimensions: (time: 5134, prediction_timedelta: 41, latitude: 721, longitude: 1440, level: 13) Coordinates: * latitude (latitude) float32 -90.0 -89.75 ... 89.75 90.0 * level (level) int32 50 100 150 200 ... 700 850 925 1000 * longitude (longitude) float32 0.0 0.25 0.5 ... 359.5 359.8 * prediction_timedelta (prediction_timedelta) timedelta64[ns] 00:00:00... * time (time) datetime64[ns] 2016-01-01 ... 2023-01-10... Data variables: (12/16) 10m_u_component_of_wind (time, prediction_timedelta, latitude, longitude) float32 dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray> 10m_v_component_of_wind (time, prediction_timedelta, latitude, longitude) float32 dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray> 10m_wind_speed (time, prediction_timedelta, latitude, longitude) float32 dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray> 2m_temperature (time, prediction_timedelta, latitude, longitude) float32 dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray> geopotential (time, prediction_timedelta, level, latitude, longitude) float32 dask.array<chunksize=(1, 1, 13, 721, 1440), meta=np.ndarray> mean_sea_level_pressure (time, prediction_timedelta, latitude, longitude) float32 dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray> ... ... total_precipitation_24hr (time, prediction_timedelta, latitude, longitude) float32 dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray> total_precipitation_6hr (time, prediction_timedelta, latitude, longitude) float32 dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray> u_component_of_wind (time, prediction_timedelta, level, latitude, longitude) float32 dask.array<chunksize=(1, 1, 13, 721, 1440), meta=np.ndarray> v_component_of_wind (time, prediction_timedelta, level, latitude, longitude) float32 dask.array<chunksize=(1, 1, 13, 721, 1440), meta=np.ndarray> vertical_velocity (time, prediction_timedelta, level, latitude, longitude) float32 dask.array<chunksize=(1, 1, 13, 721, 1440), meta=np.ndarray> wind_speed (time, prediction_timedelta, level, latitude, longitude) float32 dask.array<chunksize=(1, 1, 13, 721, 1440), meta=np.ndarray>
- time: 5134
- prediction_timedelta: 41
- latitude: 721
- longitude: 1440
- level: 13
- latitude(latitude)float32-90.0 -89.75 -89.5 ... 89.75 90.0
array([-90. , -89.75, -89.5 , ..., 89.5 , 89.75, 90. ], dtype=float32)
- level(level)int3250 100 150 200 ... 700 850 925 1000
array([ 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000], dtype=int32)
- longitude(longitude)float320.0 0.25 0.5 ... 359.2 359.5 359.8
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02], dtype=float32)
- prediction_timedelta(prediction_timedelta)timedelta64[ns]0 days 00:00:00 ... 10 days 00:0...
- long_name :
- time since forecast_reference_time
- standard_name :
- forecast_period
array([ 0, 21600000000000, 43200000000000, 64800000000000, 86400000000000, 108000000000000, 129600000000000, 151200000000000, 172800000000000, 194400000000000, 216000000000000, 237600000000000, 259200000000000, 280800000000000, 302400000000000, 324000000000000, 345600000000000, 367200000000000, 388800000000000, 410400000000000, 432000000000000, 453600000000000, 475200000000000, 496800000000000, 518400000000000, 540000000000000, 561600000000000, 583200000000000, 604800000000000, 626400000000000, 648000000000000, 669600000000000, 691200000000000, 712800000000000, 734400000000000, 756000000000000, 777600000000000, 799200000000000, 820800000000000, 842400000000000, 864000000000000], dtype='timedelta64[ns]')
- time(time)datetime64[ns]2016-01-01 ... 2023-01-10T12:00:00
- long_name :
- initial time of forecast
- standard_name :
- forecast_reference_time
array(['2016-01-01T00:00:00.000000000', '2016-01-01T12:00:00.000000000', '2016-01-02T00:00:00.000000000', ..., '2023-01-09T12:00:00.000000000', '2023-01-10T00:00:00.000000000', '2023-01-10T12:00:00.000000000'], dtype='datetime64[ns]')
- 10m_u_component_of_wind(time, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray>
- long_name :
- 10 metre U wind component
- short_name :
- u10
- standard_name :
- unknown
- units :
- m s**-1
Array Chunk Bytes 814.14 GiB 3.96 MiB Shape (5134, 41, 721, 1440) (1, 1, 721, 1440) Dask graph 210494 chunks in 2 graph layers Data type float32 numpy.ndarray - 10m_v_component_of_wind(time, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray>
- long_name :
- 10 metre V wind component
- short_name :
- v10
- standard_name :
- unknown
- units :
- m s**-1
Array Chunk Bytes 814.14 GiB 3.96 MiB Shape (5134, 41, 721, 1440) (1, 1, 721, 1440) Dask graph 210494 chunks in 2 graph layers Data type float32 numpy.ndarray - 10m_wind_speed(time, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray>
Array Chunk Bytes 814.14 GiB 3.96 MiB Shape (5134, 41, 721, 1440) (1, 1, 721, 1440) Dask graph 210494 chunks in 2 graph layers Data type float32 numpy.ndarray - 2m_temperature(time, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray>
- long_name :
- 2 metre temperature
- short_name :
- t2m
- standard_name :
- unknown
- units :
- K
Array Chunk Bytes 814.14 GiB 3.96 MiB Shape (5134, 41, 721, 1440) (1, 1, 721, 1440) Dask graph 210494 chunks in 2 graph layers Data type float32 numpy.ndarray - geopotential(time, prediction_timedelta, level, latitude, longitude)float32dask.array<chunksize=(1, 1, 13, 721, 1440), meta=np.ndarray>
- long_name :
- Geopotential
- short_name :
- z
- standard_name :
- geopotential
- units :
- m**2 s**-2
Array Chunk Bytes 10.34 TiB 51.49 MiB Shape (5134, 41, 13, 721, 1440) (1, 1, 13, 721, 1440) Dask graph 210494 chunks in 2 graph layers Data type float32 numpy.ndarray - mean_sea_level_pressure(time, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray>
- long_name :
- Mean sea level pressure
- short_name :
- msl
- standard_name :
- air_pressure_at_mean_sea_level
- units :
- Pa
Array Chunk Bytes 814.14 GiB 3.96 MiB Shape (5134, 41, 721, 1440) (1, 1, 721, 1440) Dask graph 210494 chunks in 2 graph layers Data type float32 numpy.ndarray - specific_humidity(time, prediction_timedelta, level, latitude, longitude)float32dask.array<chunksize=(1, 1, 13, 721, 1440), meta=np.ndarray>
- long_name :
- Specific humidity
- short_name :
- q
- standard_name :
- specific_humidity
- units :
- kg kg**-1
Array Chunk Bytes 10.34 TiB 51.49 MiB Shape (5134, 41, 13, 721, 1440) (1, 1, 13, 721, 1440) Dask graph 210494 chunks in 2 graph layers Data type float32 numpy.ndarray - surface_pressure(time, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray>
- long_name :
- Surface pressure
- short_name :
- sp
- standard_name :
- surface_air_pressure
- units :
- Pa
Array Chunk Bytes 814.14 GiB 3.96 MiB Shape (5134, 41, 721, 1440) (1, 1, 721, 1440) Dask graph 210494 chunks in 2 graph layers Data type float32 numpy.ndarray - temperature(time, prediction_timedelta, level, latitude, longitude)float32dask.array<chunksize=(1, 1, 13, 721, 1440), meta=np.ndarray>
- long_name :
- Temperature
- short_name :
- t
- standard_name :
- air_temperature
- units :
- K
Array Chunk Bytes 10.34 TiB 51.49 MiB Shape (5134, 41, 13, 721, 1440) (1, 1, 13, 721, 1440) Dask graph 210494 chunks in 2 graph layers Data type float32 numpy.ndarray - total_precipitation(time, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray>
- long_name :
- Total precipitation
- short_name :
- tp
- standard_name :
- unknown
- units :
- m
Array Chunk Bytes 814.14 GiB 3.96 MiB Shape (5134, 41, 721, 1440) (1, 1, 721, 1440) Dask graph 210494 chunks in 2 graph layers Data type float32 numpy.ndarray - total_precipitation_24hr(time, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray>
Array Chunk Bytes 814.14 GiB 3.96 MiB Shape (5134, 41, 721, 1440) (1, 1, 721, 1440) Dask graph 210494 chunks in 2 graph layers Data type float32 numpy.ndarray - total_precipitation_6hr(time, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray>
Array Chunk Bytes 814.14 GiB 3.96 MiB Shape (5134, 41, 721, 1440) (1, 1, 721, 1440) Dask graph 210494 chunks in 2 graph layers Data type float32 numpy.ndarray - u_component_of_wind(time, prediction_timedelta, level, latitude, longitude)float32dask.array<chunksize=(1, 1, 13, 721, 1440), meta=np.ndarray>
- long_name :
- U component of wind
- short_name :
- u
- standard_name :
- eastward_wind
- units :
- m s**-1
Array Chunk Bytes 10.34 TiB 51.49 MiB Shape (5134, 41, 13, 721, 1440) (1, 1, 13, 721, 1440) Dask graph 210494 chunks in 2 graph layers Data type float32 numpy.ndarray - v_component_of_wind(time, prediction_timedelta, level, latitude, longitude)float32dask.array<chunksize=(1, 1, 13, 721, 1440), meta=np.ndarray>
- long_name :
- V component of wind
- short_name :
- v
- standard_name :
- northward_wind
- units :
- m s**-1
Array Chunk Bytes 10.34 TiB 51.49 MiB Shape (5134, 41, 13, 721, 1440) (1, 1, 13, 721, 1440) Dask graph 210494 chunks in 2 graph layers Data type float32 numpy.ndarray - vertical_velocity(time, prediction_timedelta, level, latitude, longitude)float32dask.array<chunksize=(1, 1, 13, 721, 1440), meta=np.ndarray>
- long_name :
- Vertical velocity
- short_name :
- w
- standard_name :
- lagrangian_tendency_of_air_pressure
- units :
- Pa s**-1
Array Chunk Bytes 10.34 TiB 51.49 MiB Shape (5134, 41, 13, 721, 1440) (1, 1, 13, 721, 1440) Dask graph 210494 chunks in 2 graph layers Data type float32 numpy.ndarray - wind_speed(time, prediction_timedelta, level, latitude, longitude)float32dask.array<chunksize=(1, 1, 13, 721, 1440), meta=np.ndarray>
Array Chunk Bytes 10.34 TiB 51.49 MiB Shape (5134, 41, 13, 721, 1440) (1, 1, 13, 721, 1440) Dask graph 210494 chunks in 2 graph layers Data type float32 numpy.ndarray
- latitudePandasIndex
PandasIndex(Index([ -90.0, -89.75, -89.5, -89.25, -89.0, -88.75, -88.5, -88.25, -88.0, -87.75, ... 87.75, 88.0, 88.25, 88.5, 88.75, 89.0, 89.25, 89.5, 89.75, 90.0], dtype='float32', name='latitude', length=721))
- levelPandasIndex
PandasIndex(Index([50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000], dtype='int32', name='level'))
- longitudePandasIndex
PandasIndex(Index([ 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, ... 357.5, 357.75, 358.0, 358.25, 358.5, 358.75, 359.0, 359.25, 359.5, 359.75], dtype='float32', name='longitude', length=1440))
- prediction_timedeltaPandasIndex
PandasIndex(TimedeltaIndex([ '0 days 00:00:00', '0 days 06:00:00', '0 days 12:00:00', '0 days 18:00:00', '1 days 00:00:00', '1 days 06:00:00', '1 days 12:00:00', '1 days 18:00:00', '2 days 00:00:00', '2 days 06:00:00', '2 days 12:00:00', '2 days 18:00:00', '3 days 00:00:00', '3 days 06:00:00', '3 days 12:00:00', '3 days 18:00:00', '4 days 00:00:00', '4 days 06:00:00', '4 days 12:00:00', '4 days 18:00:00', '5 days 00:00:00', '5 days 06:00:00', '5 days 12:00:00', '5 days 18:00:00', '6 days 00:00:00', '6 days 06:00:00', '6 days 12:00:00', '6 days 18:00:00', '7 days 00:00:00', '7 days 06:00:00', '7 days 12:00:00', '7 days 18:00:00', '8 days 00:00:00', '8 days 06:00:00', '8 days 12:00:00', '8 days 18:00:00', '9 days 00:00:00', '9 days 06:00:00', '9 days 12:00:00', '9 days 18:00:00', '10 days 00:00:00'], dtype='timedelta64[ns]', name='prediction_timedelta', freq=None))
- timePandasIndex
PandasIndex(DatetimeIndex(['2016-01-01 00:00:00', '2016-01-01 12:00:00', '2016-01-02 00:00:00', '2016-01-02 12:00:00', '2016-01-03 00:00:00', '2016-01-03 12:00:00', '2016-01-04 00:00:00', '2016-01-04 12:00:00', '2016-01-05 00:00:00', '2016-01-05 12:00:00', ... '2023-01-06 00:00:00', '2023-01-06 12:00:00', '2023-01-07 00:00:00', '2023-01-07 12:00:00', '2023-01-08 00:00:00', '2023-01-08 12:00:00', '2023-01-09 00:00:00', '2023-01-09 12:00:00', '2023-01-10 00:00:00', '2023-01-10 12:00:00'], dtype='datetime64[ns]', name='time', length=5134, freq=None))
IFS ENS
Downloading the full ensemble takes a very long time. We downloaded ensemble data from the TIGGE archive for 2018 and 2020. More years are still being downloaded.
All data from the TIGGE archive can only be used for research purposes. Please check the license for more specific constraints.
Location: gs://weatherbench2/datasets/ens/
Files:
2018-1440x721.zarr
2018-512x256_equiangular_conservative.zarr
2018-240x121_equiangular_with_poles_conservative.zarr
2018-128x64_equiangular_with_poles_conservative.zarr
2018-64x32_equiangular_with_poles_conservative.zarr
2020-1440x721.zarr
2020-512x256_equiangular_conservative.zarr
2020-240x121_equiangular_with_poles_conservative.zarr
2020-128x64_equiangular_with_poles_conservative.zarr
2020-64x32_equiangular_with_poles_conservative.zarr
xr.open_zarr('gs://weatherbench2/datasets/ens/2020-1440x721.zarr')
<xarray.Dataset> Dimensions: (time: 732, number: 50, prediction_timedelta: 61, latitude: 721, longitude: 1440, level: 3) Coordinates: * latitude (latitude) float32 -90.0 -89.75 ... 89.75 90.0 * level (level) int32 500 700 850 * longitude (longitude) float32 0.0 0.25 0.5 ... 359.5 359.8 * number (number) int32 1 2 3 4 5 6 7 ... 45 46 47 48 49 50 * prediction_timedelta (prediction_timedelta) timedelta64[ns] 00:00:00... * time (time) datetime64[ns] 2020-01-01 ... 2020-12-31... Data variables: (12/14) 10m_u_component_of_wind (time, number, prediction_timedelta, latitude, longitude) float32 dask.array<chunksize=(1, 50, 1, 721, 1440), meta=np.ndarray> 10m_v_component_of_wind (time, number, prediction_timedelta, latitude, longitude) float32 dask.array<chunksize=(1, 50, 1, 721, 1440), meta=np.ndarray> 10m_wind_speed (time, number, prediction_timedelta, latitude, longitude) float32 dask.array<chunksize=(1, 50, 1, 721, 1440), meta=np.ndarray> 2m_temperature (time, number, prediction_timedelta, latitude, longitude) float32 dask.array<chunksize=(1, 50, 1, 721, 1440), meta=np.ndarray> geopotential (time, number, prediction_timedelta, level, latitude, longitude) float32 dask.array<chunksize=(1, 50, 1, 3, 721, 1440), meta=np.ndarray> mean_sea_level_pressure (time, number, prediction_timedelta, latitude, longitude) float32 dask.array<chunksize=(1, 50, 1, 721, 1440), meta=np.ndarray> ... ... total_precipitation (time, number, prediction_timedelta, latitude, longitude) float32 dask.array<chunksize=(1, 50, 1, 721, 1440), meta=np.ndarray> total_precipitation_24hr (time, number, prediction_timedelta, latitude, longitude) float32 dask.array<chunksize=(1, 50, 1, 721, 1440), meta=np.ndarray> total_precipitation_6hr (time, number, prediction_timedelta, latitude, longitude) float32 dask.array<chunksize=(1, 50, 1, 721, 1440), meta=np.ndarray> u_component_of_wind (time, number, prediction_timedelta, level, latitude, longitude) float32 dask.array<chunksize=(1, 50, 1, 3, 721, 1440), meta=np.ndarray> v_component_of_wind (time, number, prediction_timedelta, level, latitude, longitude) float32 dask.array<chunksize=(1, 50, 1, 3, 721, 1440), meta=np.ndarray> wind_speed (time, number, prediction_timedelta, level, latitude, longitude) float32 dask.array<chunksize=(1, 50, 1, 3, 721, 1440), meta=np.ndarray>
- time: 732
- number: 50
- prediction_timedelta: 61
- latitude: 721
- longitude: 1440
- level: 3
- latitude(latitude)float32-90.0 -89.75 -89.5 ... 89.75 90.0
array([-90. , -89.75, -89.5 , ..., 89.5 , 89.75, 90. ], dtype=float32)
- level(level)int32500 700 850
array([500, 700, 850], dtype=int32)
- longitude(longitude)float320.0 0.25 0.5 ... 359.2 359.5 359.8
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02], dtype=float32)
- number(number)int321 2 3 4 5 6 7 ... 45 46 47 48 49 50
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], dtype=int32)
- prediction_timedelta(prediction_timedelta)timedelta64[ns]0 days 00:00:00 ... 15 days 00:0...
- long_name :
- time since forecast_reference_time
- standard_name :
- forecast_period
array([ 0, 21600000000000, 43200000000000, 64800000000000, 86400000000000, 108000000000000, 129600000000000, 151200000000000, 172800000000000, 194400000000000, 216000000000000, 237600000000000, 259200000000000, 280800000000000, 302400000000000, 324000000000000, 345600000000000, 367200000000000, 388800000000000, 410400000000000, 432000000000000, 453600000000000, 475200000000000, 496800000000000, 518400000000000, 540000000000000, 561600000000000, 583200000000000, 604800000000000, 626400000000000, 648000000000000, 669600000000000, 691200000000000, 712800000000000, 734400000000000, 756000000000000, 777600000000000, 799200000000000, 820800000000000, 842400000000000, 864000000000000, 885600000000000, 907200000000000, 928800000000000, 950400000000000, 972000000000000, 993600000000000, 1015200000000000, 1036800000000000, 1058400000000000, 1080000000000000, 1101600000000000, 1123200000000000, 1144800000000000, 1166400000000000, 1188000000000000, 1209600000000000, 1231200000000000, 1252800000000000, 1274400000000000, 1296000000000000], dtype='timedelta64[ns]')
- time(time)datetime64[ns]2020-01-01 ... 2020-12-31T12:00:00
- long_name :
- initial time of forecast
- standard_name :
- forecast_reference_time
array(['2020-01-01T00:00:00.000000000', '2020-01-01T12:00:00.000000000', '2020-01-02T00:00:00.000000000', ..., '2020-12-30T12:00:00.000000000', '2020-12-31T00:00:00.000000000', '2020-12-31T12:00:00.000000000'], dtype='datetime64[ns]')
- 10m_u_component_of_wind(time, number, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 50, 1, 721, 1440), meta=np.ndarray>
- long_name :
- 10 metre U wind component
- short_name :
- u10
- standard_name :
- unknown
- units :
- m s**-1
Array Chunk Bytes 8.43 TiB 198.03 MiB Shape (732, 50, 61, 721, 1440) (1, 50, 1, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - 10m_v_component_of_wind(time, number, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 50, 1, 721, 1440), meta=np.ndarray>
- long_name :
- 10 metre V wind component
- short_name :
- v10
- standard_name :
- unknown
- units :
- m s**-1
Array Chunk Bytes 8.43 TiB 198.03 MiB Shape (732, 50, 61, 721, 1440) (1, 50, 1, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - 10m_wind_speed(time, number, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 50, 1, 721, 1440), meta=np.ndarray>
Array Chunk Bytes 8.43 TiB 198.03 MiB Shape (732, 50, 61, 721, 1440) (1, 50, 1, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - 2m_temperature(time, number, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 50, 1, 721, 1440), meta=np.ndarray>
- long_name :
- 2 metre temperature
- short_name :
- t2m
- standard_name :
- unknown
- units :
- K
Array Chunk Bytes 8.43 TiB 198.03 MiB Shape (732, 50, 61, 721, 1440) (1, 50, 1, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - geopotential(time, number, prediction_timedelta, level, latitude, longitude)float32dask.array<chunksize=(1, 50, 1, 3, 721, 1440), meta=np.ndarray>
- long_name :
- Geopotential
- short_name :
- z
- standard_name :
- geopotential
- units :
- m**2 s**-2
Array Chunk Bytes 25.30 TiB 594.09 MiB Shape (732, 50, 61, 3, 721, 1440) (1, 50, 1, 3, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - mean_sea_level_pressure(time, number, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 50, 1, 721, 1440), meta=np.ndarray>
- long_name :
- Mean sea level pressure
- short_name :
- msl
- standard_name :
- air_pressure_at_mean_sea_level
- units :
- Pa
Array Chunk Bytes 8.43 TiB 198.03 MiB Shape (732, 50, 61, 721, 1440) (1, 50, 1, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - specific_humidity(time, number, prediction_timedelta, level, latitude, longitude)float32dask.array<chunksize=(1, 50, 1, 3, 721, 1440), meta=np.ndarray>
- long_name :
- Specific humidity
- short_name :
- q
- standard_name :
- specific_humidity
- units :
- kg kg**-1
Array Chunk Bytes 25.30 TiB 594.09 MiB Shape (732, 50, 61, 3, 721, 1440) (1, 50, 1, 3, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - temperature(time, number, prediction_timedelta, level, latitude, longitude)float32dask.array<chunksize=(1, 50, 1, 3, 721, 1440), meta=np.ndarray>
- long_name :
- Temperature
- short_name :
- t
- standard_name :
- air_temperature
- units :
- K
Array Chunk Bytes 25.30 TiB 594.09 MiB Shape (732, 50, 61, 3, 721, 1440) (1, 50, 1, 3, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - total_precipitation(time, number, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 50, 1, 721, 1440), meta=np.ndarray>
- long_name :
- Total precipitation
- short_name :
- tp
- standard_name :
- unknown
- units :
- m
Array Chunk Bytes 8.43 TiB 198.03 MiB Shape (732, 50, 61, 721, 1440) (1, 50, 1, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - total_precipitation_24hr(time, number, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 50, 1, 721, 1440), meta=np.ndarray>
Array Chunk Bytes 8.43 TiB 198.03 MiB Shape (732, 50, 61, 721, 1440) (1, 50, 1, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - total_precipitation_6hr(time, number, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 50, 1, 721, 1440), meta=np.ndarray>
Array Chunk Bytes 8.43 TiB 198.03 MiB Shape (732, 50, 61, 721, 1440) (1, 50, 1, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - u_component_of_wind(time, number, prediction_timedelta, level, latitude, longitude)float32dask.array<chunksize=(1, 50, 1, 3, 721, 1440), meta=np.ndarray>
- long_name :
- U component of wind
- short_name :
- u
- standard_name :
- eastward_wind
- units :
- m s**-1
Array Chunk Bytes 25.30 TiB 594.09 MiB Shape (732, 50, 61, 3, 721, 1440) (1, 50, 1, 3, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - v_component_of_wind(time, number, prediction_timedelta, level, latitude, longitude)float32dask.array<chunksize=(1, 50, 1, 3, 721, 1440), meta=np.ndarray>
- long_name :
- V component of wind
- short_name :
- v
- standard_name :
- northward_wind
- units :
- m s**-1
Array Chunk Bytes 25.30 TiB 594.09 MiB Shape (732, 50, 61, 3, 721, 1440) (1, 50, 1, 3, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - wind_speed(time, number, prediction_timedelta, level, latitude, longitude)float32dask.array<chunksize=(1, 50, 1, 3, 721, 1440), meta=np.ndarray>
Array Chunk Bytes 25.30 TiB 594.09 MiB Shape (732, 50, 61, 3, 721, 1440) (1, 50, 1, 3, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray
- latitudePandasIndex
PandasIndex(Index([ -90.0, -89.75, -89.5, -89.25, -89.0, -88.75, -88.5, -88.25, -88.0, -87.75, ... 87.75, 88.0, 88.25, 88.5, 88.75, 89.0, 89.25, 89.5, 89.75, 90.0], dtype='float32', name='latitude', length=721))
- levelPandasIndex
PandasIndex(Index([500, 700, 850], dtype='int32', name='level'))
- longitudePandasIndex
PandasIndex(Index([ 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, ... 357.5, 357.75, 358.0, 358.25, 358.5, 358.75, 359.0, 359.25, 359.5, 359.75], dtype='float32', name='longitude', length=1440))
- numberPandasIndex
PandasIndex(Index([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], dtype='int32', name='number'))
- prediction_timedeltaPandasIndex
PandasIndex(TimedeltaIndex([ '0 days 00:00:00', '0 days 06:00:00', '0 days 12:00:00', '0 days 18:00:00', '1 days 00:00:00', '1 days 06:00:00', '1 days 12:00:00', '1 days 18:00:00', '2 days 00:00:00', '2 days 06:00:00', '2 days 12:00:00', '2 days 18:00:00', '3 days 00:00:00', '3 days 06:00:00', '3 days 12:00:00', '3 days 18:00:00', '4 days 00:00:00', '4 days 06:00:00', '4 days 12:00:00', '4 days 18:00:00', '5 days 00:00:00', '5 days 06:00:00', '5 days 12:00:00', '5 days 18:00:00', '6 days 00:00:00', '6 days 06:00:00', '6 days 12:00:00', '6 days 18:00:00', '7 days 00:00:00', '7 days 06:00:00', '7 days 12:00:00', '7 days 18:00:00', '8 days 00:00:00', '8 days 06:00:00', '8 days 12:00:00', '8 days 18:00:00', '9 days 00:00:00', '9 days 06:00:00', '9 days 12:00:00', '9 days 18:00:00', '10 days 00:00:00', '10 days 06:00:00', '10 days 12:00:00', '10 days 18:00:00', '11 days 00:00:00', '11 days 06:00:00', '11 days 12:00:00', '11 days 18:00:00', '12 days 00:00:00', '12 days 06:00:00', '12 days 12:00:00', '12 days 18:00:00', '13 days 00:00:00', '13 days 06:00:00', '13 days 12:00:00', '13 days 18:00:00', '14 days 00:00:00', '14 days 06:00:00', '14 days 12:00:00', '14 days 18:00:00', '15 days 00:00:00'], dtype='timedelta64[ns]', name='prediction_timedelta', freq=None))
- timePandasIndex
PandasIndex(DatetimeIndex(['2020-01-01 00:00:00', '2020-01-01 12:00:00', '2020-01-02 00:00:00', '2020-01-02 12:00:00', '2020-01-03 00:00:00', '2020-01-03 12:00:00', '2020-01-04 00:00:00', '2020-01-04 12:00:00', '2020-01-05 00:00:00', '2020-01-05 12:00:00', ... '2020-12-27 00:00:00', '2020-12-27 12:00:00', '2020-12-28 00:00:00', '2020-12-28 12:00:00', '2020-12-29 00:00:00', '2020-12-29 12:00:00', '2020-12-30 00:00:00', '2020-12-30 12:00:00', '2020-12-31 00:00:00', '2020-12-31 12:00:00'], dtype='datetime64[ns]', name='time', length=732, freq=None))
IFS ENS mean
We also compute the ensemble mean and save it as a separate file, e.g. to use it as a deterministic baseline.
Location: gs://weatherbench2/datasets/ens/
Files:
2018-1440x721_mean.zarr
2018-512x256_equiangular_conservative_mean.zarr
2018-240x121_equiangular_with_poles_conservative_mean.zarr
2018-128x64_equiangular_with_poles_conservative_mean.zarr
2018-64x32_equiangular_with_poles_conservative_mean.zarr
2020-1440x721_mean.zarr
2020-512x256_equiangular_conservative_mean.zarr
2020-240x121_equiangular_with_poles_conservative_mean.zarr
2020-128x64_equiangular_with_poles_conservative_mean.zarr
2020-64x32_equiangular_with_poles_conservative_mean.zarr
xr.open_zarr('gs://weatherbench2/datasets/ens/2020-1440x721_mean.zarr')
<xarray.Dataset> Dimensions: (time: 732, prediction_timedelta: 61, latitude: 721, longitude: 1440, level: 3) Coordinates: * latitude (latitude) float32 -90.0 -89.75 ... 89.75 90.0 * level (level) int32 500 700 850 * longitude (longitude) float32 0.0 0.25 0.5 ... 359.5 359.8 * prediction_timedelta (prediction_timedelta) timedelta64[ns] 00:00:00... * time (time) datetime64[ns] 2020-01-01 ... 2020-12-31... Data variables: (12/14) 10m_u_component_of_wind (time, prediction_timedelta, latitude, longitude) float32 dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray> 10m_v_component_of_wind (time, prediction_timedelta, latitude, longitude) float32 dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray> 10m_wind_speed (time, prediction_timedelta, latitude, longitude) float32 dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray> 2m_temperature (time, prediction_timedelta, latitude, longitude) float32 dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray> geopotential (time, prediction_timedelta, level, latitude, longitude) float32 dask.array<chunksize=(1, 1, 3, 721, 1440), meta=np.ndarray> mean_sea_level_pressure (time, prediction_timedelta, latitude, longitude) float32 dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray> ... ... total_precipitation (time, prediction_timedelta, latitude, longitude) float32 dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray> total_precipitation_24hr (time, prediction_timedelta, latitude, longitude) float32 dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray> total_precipitation_6hr (time, prediction_timedelta, latitude, longitude) float32 dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray> u_component_of_wind (time, prediction_timedelta, level, latitude, longitude) float32 dask.array<chunksize=(1, 1, 3, 721, 1440), meta=np.ndarray> v_component_of_wind (time, prediction_timedelta, level, latitude, longitude) float32 dask.array<chunksize=(1, 1, 3, 721, 1440), meta=np.ndarray> wind_speed (time, prediction_timedelta, level, latitude, longitude) float32 dask.array<chunksize=(1, 1, 3, 721, 1440), meta=np.ndarray>
- time: 732
- prediction_timedelta: 61
- latitude: 721
- longitude: 1440
- level: 3
- latitude(latitude)float32-90.0 -89.75 -89.5 ... 89.75 90.0
array([-90. , -89.75, -89.5 , ..., 89.5 , 89.75, 90. ], dtype=float32)
- level(level)int32500 700 850
array([500, 700, 850], dtype=int32)
- longitude(longitude)float320.0 0.25 0.5 ... 359.2 359.5 359.8
array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02, 3.5975e+02], dtype=float32)
- prediction_timedelta(prediction_timedelta)timedelta64[ns]0 days 00:00:00 ... 15 days 00:0...
- long_name :
- time since forecast_reference_time
- standard_name :
- forecast_period
array([ 0, 21600000000000, 43200000000000, 64800000000000, 86400000000000, 108000000000000, 129600000000000, 151200000000000, 172800000000000, 194400000000000, 216000000000000, 237600000000000, 259200000000000, 280800000000000, 302400000000000, 324000000000000, 345600000000000, 367200000000000, 388800000000000, 410400000000000, 432000000000000, 453600000000000, 475200000000000, 496800000000000, 518400000000000, 540000000000000, 561600000000000, 583200000000000, 604800000000000, 626400000000000, 648000000000000, 669600000000000, 691200000000000, 712800000000000, 734400000000000, 756000000000000, 777600000000000, 799200000000000, 820800000000000, 842400000000000, 864000000000000, 885600000000000, 907200000000000, 928800000000000, 950400000000000, 972000000000000, 993600000000000, 1015200000000000, 1036800000000000, 1058400000000000, 1080000000000000, 1101600000000000, 1123200000000000, 1144800000000000, 1166400000000000, 1188000000000000, 1209600000000000, 1231200000000000, 1252800000000000, 1274400000000000, 1296000000000000], dtype='timedelta64[ns]')
- time(time)datetime64[ns]2020-01-01 ... 2020-12-31T12:00:00
- long_name :
- initial time of forecast
- standard_name :
- forecast_reference_time
array(['2020-01-01T00:00:00.000000000', '2020-01-01T12:00:00.000000000', '2020-01-02T00:00:00.000000000', ..., '2020-12-30T12:00:00.000000000', '2020-12-31T00:00:00.000000000', '2020-12-31T12:00:00.000000000'], dtype='datetime64[ns]')
- 10m_u_component_of_wind(time, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray>
- long_name :
- 10 metre U wind component
- short_name :
- u10
- standard_name :
- unknown
- units :
- m s**-1
Array Chunk Bytes 172.70 GiB 3.96 MiB Shape (732, 61, 721, 1440) (1, 1, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - 10m_v_component_of_wind(time, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray>
- long_name :
- 10 metre V wind component
- short_name :
- v10
- standard_name :
- unknown
- units :
- m s**-1
Array Chunk Bytes 172.70 GiB 3.96 MiB Shape (732, 61, 721, 1440) (1, 1, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - 10m_wind_speed(time, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray>
Array Chunk Bytes 172.70 GiB 3.96 MiB Shape (732, 61, 721, 1440) (1, 1, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - 2m_temperature(time, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray>
- long_name :
- 2 metre temperature
- short_name :
- t2m
- standard_name :
- unknown
- units :
- K
Array Chunk Bytes 172.70 GiB 3.96 MiB Shape (732, 61, 721, 1440) (1, 1, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - geopotential(time, prediction_timedelta, level, latitude, longitude)float32dask.array<chunksize=(1, 1, 3, 721, 1440), meta=np.ndarray>
- long_name :
- Geopotential
- short_name :
- z
- standard_name :
- geopotential
- units :
- m**2 s**-2
Array Chunk Bytes 518.11 GiB 11.88 MiB Shape (732, 61, 3, 721, 1440) (1, 1, 3, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - mean_sea_level_pressure(time, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray>
- long_name :
- Mean sea level pressure
- short_name :
- msl
- standard_name :
- air_pressure_at_mean_sea_level
- units :
- Pa
Array Chunk Bytes 172.70 GiB 3.96 MiB Shape (732, 61, 721, 1440) (1, 1, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - specific_humidity(time, prediction_timedelta, level, latitude, longitude)float32dask.array<chunksize=(1, 1, 3, 721, 1440), meta=np.ndarray>
- long_name :
- Specific humidity
- short_name :
- q
- standard_name :
- specific_humidity
- units :
- kg kg**-1
Array Chunk Bytes 518.11 GiB 11.88 MiB Shape (732, 61, 3, 721, 1440) (1, 1, 3, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - temperature(time, prediction_timedelta, level, latitude, longitude)float32dask.array<chunksize=(1, 1, 3, 721, 1440), meta=np.ndarray>
- long_name :
- Temperature
- short_name :
- t
- standard_name :
- air_temperature
- units :
- K
Array Chunk Bytes 518.11 GiB 11.88 MiB Shape (732, 61, 3, 721, 1440) (1, 1, 3, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - total_precipitation(time, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray>
- long_name :
- Total precipitation
- short_name :
- tp
- standard_name :
- unknown
- units :
- m
Array Chunk Bytes 172.70 GiB 3.96 MiB Shape (732, 61, 721, 1440) (1, 1, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - total_precipitation_24hr(time, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray>
Array Chunk Bytes 172.70 GiB 3.96 MiB Shape (732, 61, 721, 1440) (1, 1, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - total_precipitation_6hr(time, prediction_timedelta, latitude, longitude)float32dask.array<chunksize=(1, 1, 721, 1440), meta=np.ndarray>
Array Chunk Bytes 172.70 GiB 3.96 MiB Shape (732, 61, 721, 1440) (1, 1, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - u_component_of_wind(time, prediction_timedelta, level, latitude, longitude)float32dask.array<chunksize=(1, 1, 3, 721, 1440), meta=np.ndarray>
- long_name :
- U component of wind
- short_name :
- u
- standard_name :
- eastward_wind
- units :
- m s**-1
Array Chunk Bytes 518.11 GiB 11.88 MiB Shape (732, 61, 3, 721, 1440) (1, 1, 3, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - v_component_of_wind(time, prediction_timedelta, level, latitude, longitude)float32dask.array<chunksize=(1, 1, 3, 721, 1440), meta=np.ndarray>
- long_name :
- V component of wind
- short_name :
- v
- standard_name :
- northward_wind
- units :
- m s**-1
Array Chunk Bytes 518.11 GiB 11.88 MiB Shape (732, 61, 3, 721, 1440) (1, 1, 3, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray - wind_speed(time, prediction_timedelta, level, latitude, longitude)float32dask.array<chunksize=(1, 1, 3, 721, 1440), meta=np.ndarray>
Array Chunk Bytes 518.11 GiB 11.88 MiB Shape (732, 61, 3, 721, 1440) (1, 1, 3, 721, 1440) Dask graph 44652 chunks in 2 graph layers Data type float32 numpy.ndarray